Matematikk 1–10 (MAT01‑05)
Kompetansemål og vurdering
Kompetansemål etter 5. trinn
Mål for opplæringen er at eleven skal kunne
- utforske og forklare sammenhenger mellom brøker, desimaltall og prosent og bruke det i hoderegningResonnering i matematikk handler om å kunne følge, vurdere og forstå matematiske tankerekker. Det innebærer at elevene skal forstå at matematiske regler og resultater ikke er tilfeldige, men har klare begrunnelser. Elevene skal utforme egne resonnementer både for å forstå og for å løse problemer. Argumentasjon i matematikk handler om at elevene begrunner framgangsmåter, resonnementer og løsninger og beviser at disse er gyldige.Abstraksjon i matematikk innebærer at elevene gradvis utvikler en formalisering av tanker, strategier og matematisk språk. Utviklingen går fra konkrete beskrivelser til formelt symbolspråk og formelle resonnementer. Generalisering i matematikk handler om at elevene oppdager sammenhenger og strukturer og ikke blir presentert for en ferdig løsning. Det vil si at elevene kan utforske tall, utregninger og figurer for å finne sammenhenger og deretter formalisere ved å bruke algebra og hensiktsmessige representasjoner.
- beskrive brøk som del av en hel, som del av en mengde og som tall på tallinjen og vurdere og navngi størrelseneRepresentasjoner i matematikk er måter å uttrykke matematiske begreper, sammenhenger og problemer på. Representasjoner kan være konkrete, kontekstuelle, visuelle, verbale og symbolske. Kommunikasjon i matematikk handler om at elevene bruker matematisk språk i samtaler, argumentasjon og resonnementer. Elevene må få mulighet til å bruke matematiske representasjoner i ulike sammenhenger gjennom egne erfaringer og matematiske samtaler. Elevene må få mulighet til å forklare og begrunne valg av representasjonsform. Elevene må kunne oversette mellom matematiske representasjoner og dagligspråket og veksle mellom ulike representasjoner.
- representere brøker på ulike måter og oversette mellom de ulike representasjoneneRepresentasjoner i matematikk er måter å uttrykke matematiske begreper, sammenhenger og problemer på. Representasjoner kan være konkrete, kontekstuelle, visuelle, verbale og symbolske. Kommunikasjon i matematikk handler om at elevene bruker matematisk språk i samtaler, argumentasjon og resonnementer. Elevene må få mulighet til å bruke matematiske representasjoner i ulike sammenhenger gjennom egne erfaringer og matematiske samtaler. Elevene må få mulighet til å forklare og begrunne valg av representasjonsform. Elevene må kunne oversette mellom matematiske representasjoner og dagligspråket og veksle mellom ulike representasjoner.
- utvikle og bruke ulike strategier for regning med positive tall og brøk og forklare tenkemåtene sineEn modell i matematikk er en beskrivelse av virkeligheten i matematisk språk. Elevene skal ha innsikt i hvordan modeller i matematikk brukes for å beskrive dagliglivet, arbeidslivet og samfunnet ellers. Modellering i matematikk handler om å lage slike modeller. Det handler også om å kritisk vurdere om modellene er gyldige, og hvilke begrensninger de har, vurdere modellene i lys av de opprinnelige situasjonene og vurdere om de kan brukes i andre situasjoner. Anvendelser i matematikk handler om at elevene skal få innsikt i hvordan de skal bruke matematikk i ulike situasjoner, både i og utenfor faget.
- formulere og løse problemer fra egen hverdag som har med brøk å gjøreUtforsking i matematikk handler om at elevene leter etter mønstre, finner sammenhenger og diskuterer seg fram til en felles forståelse. Elevene skal legge mer vekt på strategiene og framgangsmåtene enn på løsningene. Problemløsing i matematikk handler om at elevene utvikler en metode for å løse et problem de ikke kjenner fra før. Algoritmisk tenkning er viktig i prosessen med å utvikle strategier og framgangsmåter for å løse problemer og innebærer å bryte ned et problem i delproblemer som kan løses systematisk. Videre innebærer det å vurdere om delproblemene best kan løses med eller uten digitale verktøy. Problemløsing handler også om å analysere og omforme kjente og ukjente problemer, løse dem og vurdere om løsningene er gyldige.
- diskutere tilfeldighet og sannsynlighet i spill og praktiske situasjoner og knytte det til brøkUtforsking i matematikk handler om at elevene leter etter mønstre, finner sammenhenger og diskuterer seg fram til en felles forståelse. Elevene skal legge mer vekt på strategiene og framgangsmåtene enn på løsningene. Problemløsing i matematikk handler om at elevene utvikler en metode for å løse et problem de ikke kjenner fra før. Algoritmisk tenkning er viktig i prosessen med å utvikle strategier og framgangsmåter for å løse problemer og innebærer å bryte ned et problem i delproblemer som kan løses systematisk. Videre innebærer det å vurdere om delproblemene best kan løses med eller uten digitale verktøy. Problemløsing handler også om å analysere og omforme kjente og ukjente problemer, løse dem og vurdere om løsningene er gyldige.Resonnering i matematikk handler om å kunne følge, vurdere og forstå matematiske tankerekker. Det innebærer at elevene skal forstå at matematiske regler og resultater ikke er tilfeldige, men har klare begrunnelser. Elevene skal utforme egne resonnementer både for å forstå og for å løse problemer. Argumentasjon i matematikk handler om at elevene begrunner framgangsmåter, resonnementer og løsninger og beviser at disse er gyldige.
- løse ligninger og ulikheter gjennom logiske resonnementer og forklare hva det vil si at et tall er en løsning på en ligningUtforsking i matematikk handler om at elevene leter etter mønstre, finner sammenhenger og diskuterer seg fram til en felles forståelse. Elevene skal legge mer vekt på strategiene og framgangsmåtene enn på løsningene. Problemløsing i matematikk handler om at elevene utvikler en metode for å løse et problem de ikke kjenner fra før. Algoritmisk tenkning er viktig i prosessen med å utvikle strategier og framgangsmåter for å løse problemer og innebærer å bryte ned et problem i delproblemer som kan løses systematisk. Videre innebærer det å vurdere om delproblemene best kan løses med eller uten digitale verktøy. Problemløsing handler også om å analysere og omforme kjente og ukjente problemer, løse dem og vurdere om løsningene er gyldige.Resonnering i matematikk handler om å kunne følge, vurdere og forstå matematiske tankerekker. Det innebærer at elevene skal forstå at matematiske regler og resultater ikke er tilfeldige, men har klare begrunnelser. Elevene skal utforme egne resonnementer både for å forstå og for å løse problemer. Argumentasjon i matematikk handler om at elevene begrunner framgangsmåter, resonnementer og løsninger og beviser at disse er gyldige.
- lage og løse oppgaver i regneark som omhandler personlig økonomiEn modell i matematikk er en beskrivelse av virkeligheten i matematisk språk. Elevene skal ha innsikt i hvordan modeller i matematikk brukes for å beskrive dagliglivet, arbeidslivet og samfunnet ellers. Modellering i matematikk handler om å lage slike modeller. Det handler også om å kritisk vurdere om modellene er gyldige, og hvilke begrensninger de har, vurdere modellene i lys av de opprinnelige situasjonene og vurdere om de kan brukes i andre situasjoner. Anvendelser i matematikk handler om at elevene skal få innsikt i hvordan de skal bruke matematikk i ulike situasjoner, både i og utenfor faget.Representasjoner i matematikk er måter å uttrykke matematiske begreper, sammenhenger og problemer på. Representasjoner kan være konkrete, kontekstuelle, visuelle, verbale og symbolske. Kommunikasjon i matematikk handler om at elevene bruker matematisk språk i samtaler, argumentasjon og resonnementer. Elevene må få mulighet til å bruke matematiske representasjoner i ulike sammenhenger gjennom egne erfaringer og matematiske samtaler. Elevene må få mulighet til å forklare og begrunne valg av representasjonsform. Elevene må kunne oversette mellom matematiske representasjoner og dagligspråket og veksle mellom ulike representasjoner.
- formulere og løse problemer fra egen hverdag som har med tid å gjøreEn modell i matematikk er en beskrivelse av virkeligheten i matematisk språk. Elevene skal ha innsikt i hvordan modeller i matematikk brukes for å beskrive dagliglivet, arbeidslivet og samfunnet ellers. Modellering i matematikk handler om å lage slike modeller. Det handler også om å kritisk vurdere om modellene er gyldige, og hvilke begrensninger de har, vurdere modellene i lys av de opprinnelige situasjonene og vurdere om de kan brukes i andre situasjoner. Anvendelser i matematikk handler om at elevene skal få innsikt i hvordan de skal bruke matematikk i ulike situasjoner, både i og utenfor faget.
- lage og programmere algoritmer med bruk av variabler, vilkår og løkkerUtforsking i matematikk handler om at elevene leter etter mønstre, finner sammenhenger og diskuterer seg fram til en felles forståelse. Elevene skal legge mer vekt på strategiene og framgangsmåtene enn på løsningene. Problemløsing i matematikk handler om at elevene utvikler en metode for å løse et problem de ikke kjenner fra før. Algoritmisk tenkning er viktig i prosessen med å utvikle strategier og framgangsmåter for å løse problemer og innebærer å bryte ned et problem i delproblemer som kan løses systematisk. Videre innebærer det å vurdere om delproblemene best kan løses med eller uten digitale verktøy. Problemløsing handler også om å analysere og omforme kjente og ukjente problemer, løse dem og vurdere om løsningene er gyldige.Abstraksjon i matematikk innebærer at elevene gradvis utvikler en formalisering av tanker, strategier og matematisk språk. Utviklingen går fra konkrete beskrivelser til formelt symbolspråk og formelle resonnementer. Generalisering i matematikk handler om at elevene oppdager sammenhenger og strukturer og ikke blir presentert for en ferdig løsning. Det vil si at elevene kan utforske tall, utregninger og figurer for å finne sammenhenger og deretter formalisere ved å bruke algebra og hensiktsmessige representasjoner.
Underveisvurdering
Underveisvurderingen skal bidra til å fremme læring og til å utvikle kompetanse i matematikk. Elevene viser og utvikler kompetanse i faget på 5. trinn når de utforsker og reflekterer over ulike matematiske begreper, representasjoner og strategier i arbeid med brøk og uformell løsing av ligninger og ulikheter. Elevene viser og utvikler også kompetanse når de bruker kunnskap og ferdigheter til å formulere og løse problemer som er knyttet til hverdagen og samfunnet. Videre viser og utvikler de kompetanse i matematikk når de resonnerer over og argumenterer for løsninger og matematiske sammenhenger.
Læreren skal legge til rette for elevmedvirkning og stimulere til lærelyst ved at elevene får utforske matematikk og løse matematiske problemer gjennom å være kreative, resonnere og reflektere. Læreren og elevene skal være i dialog om elevenes utvikling i programmering og tallforståelse. Elevene skal få mulighet til å prøve og feile. Med utgangspunkt i kompetansen elevene viser, skal de få mulighet til å sette ord på hva de opplever at de får til, og hva de får til bedre enn tidligere. Læreren skal gi veiledning om videre læring og tilpasse opplæringen slik at elevene kan bruke veiledningen for å utvikle kompetansen sin i å utforske ulike representasjoner og problemløsingsstrategier og i å argumentere med matematiske begreper.
