Matematikk 1–10 (MAT01‑05)
Kompetansemål og vurdering
Kompetansemål etter 5. trinn
Mål for opplæringa er at eleven skal kunne
- utforske og forklare samanhengar mellom brøkar, desimaltal og prosent og bruke det i hovudrekning
Resonnering i matematikk handlar om å kunne følgje, vurdere og forstå matematiske tankerekkjer. Det inneber at elevane skal forstå at matematiske reglar og resultat ikkje er tilfeldige, men har klare grunngivingar. Elevane skal utforme eigne resonnement både for å forstå og for å løyse problem. Argumentasjon i matematikk handlar om at elevane grunngir framgangsmåtar, resonnement og løysingar og beviser at desse er gyldige.
Abstraksjon i matematikk inneber at elevane gradvis utviklar ei formalisering av tankar, strategiar og matematisk språk. Utviklinga går frå konkrete beskrivingar til formelt symbolspråk og formelle resonnement. Generalisering i matematikk handlar om at elevane oppdagar samanhengar og strukturar og ikkje blir presenterte for ei ferdig løysing. Det vil seie at elevane kan utforske tal, utrekningar og figurar for å finne samanhengar og deretter formalisere ved å bruke algebra og formålstenlege representasjonar.
- beskrive brøk som del av ein heil, som del av ei mengd og som tal på tallinja og vurdere og namngi storleikane
Representasjonar i matematikk er måtar å uttrykkje matematiske omgrep, samanhengar og problem på. Representasjonar kan vere konkrete, kontekstuelle, visuelle, verbale og symbolske. Kommunikasjon i matematikk handlar om at elevane bruker matematisk språk i samtalar, argumentasjon og resonnement. Elevane må få høve til å bruke matematiske representasjonar i ulike samanhengar gjennom eigne erfaringar og matematiske samtalar. Elevane må få høve til å forklare og grunngi val av representasjonsform. Elevane må kunne omsetje mellom matematiske representasjonar og daglegspråket og veksle mellom ulike representasjonar.
- representere brøkar på ulike måtar og omsetje mellom dei ulike representasjonane
Representasjonar i matematikk er måtar å uttrykkje matematiske omgrep, samanhengar og problem på. Representasjonar kan vere konkrete, kontekstuelle, visuelle, verbale og symbolske. Kommunikasjon i matematikk handlar om at elevane bruker matematisk språk i samtalar, argumentasjon og resonnement. Elevane må få høve til å bruke matematiske representasjonar i ulike samanhengar gjennom eigne erfaringar og matematiske samtalar. Elevane må få høve til å forklare og grunngi val av representasjonsform. Elevane må kunne omsetje mellom matematiske representasjonar og daglegspråket og veksle mellom ulike representasjonar.
- utvikle og bruke ulike strategiar for rekning med positive tal og brøk og forklare tenkjemåtane sine
Ein modell i matematikk er ei beskriving av verkelegheita i matematisk språk. Elevane skal ha innsikt i korleis modellar i matematikk blir brukte for å beskrive dagleglivet, arbeidslivet og samfunnet elles. Modellering i matematikk handlar om å lage slike modellar. Det handlar òg om å kritisk vurdere om modellane er gyldige, og kva avgrensingar dei har, vurdere modellane i lys av dei opphavlege situasjonane og vurdere om dei kan brukast i andre situasjonar. Anvendingar i matematikk handlar om at elevane skal få innsikt i korleis dei skal bruke matematikk i ulike situasjonar, både i og utanfor faget.
- formulere og løyse problem frå eigen kvardag som har med brøk å gjere
Utforsking i matematikk handlar om at elevane leiter etter mønster, finn samanhengar og diskuterer seg fram til ei felles forståing. Elevane skal leggje meir vekt på strategiane og framgangsmåtane enn på løysingane. Problemløysing i matematikk handlar om at elevane utviklar ein metode for å løyse eit problem dei ikkje kjenner frå før. Algoritmisk tenking er viktig i prosessen med å utvikle strategiar og framgangsmåtar for å løyse problem og inneber å bryte ned eit problem i delproblem som kan løysast systematisk. Vidare inneber det å vurdere om delproblema best kan løysast med eller utan digitale verktøy. Problemløysing handlar òg om å analysere og forme om kjende og ukjende problem, løyse dei og vurdere om løysingane er gyldige.
- diskutere tilfeldigheit og sannsyn i spel og praktiske situasjonar og knyte det til brøk
Utforsking i matematikk handlar om at elevane leiter etter mønster, finn samanhengar og diskuterer seg fram til ei felles forståing. Elevane skal leggje meir vekt på strategiane og framgangsmåtane enn på løysingane. Problemløysing i matematikk handlar om at elevane utviklar ein metode for å løyse eit problem dei ikkje kjenner frå før. Algoritmisk tenking er viktig i prosessen med å utvikle strategiar og framgangsmåtar for å løyse problem og inneber å bryte ned eit problem i delproblem som kan løysast systematisk. Vidare inneber det å vurdere om delproblema best kan løysast med eller utan digitale verktøy. Problemløysing handlar òg om å analysere og forme om kjende og ukjende problem, løyse dei og vurdere om løysingane er gyldige.
Resonnering i matematikk handlar om å kunne følgje, vurdere og forstå matematiske tankerekkjer. Det inneber at elevane skal forstå at matematiske reglar og resultat ikkje er tilfeldige, men har klare grunngivingar. Elevane skal utforme eigne resonnement både for å forstå og for å løyse problem. Argumentasjon i matematikk handlar om at elevane grunngir framgangsmåtar, resonnement og løysingar og beviser at desse er gyldige.
- løyse likningar og ulikskapar gjennom logiske resonnement og forklare kva det vil seie at eit tal er ei løysing på ei likning
Utforsking i matematikk handlar om at elevane leiter etter mønster, finn samanhengar og diskuterer seg fram til ei felles forståing. Elevane skal leggje meir vekt på strategiane og framgangsmåtane enn på løysingane. Problemløysing i matematikk handlar om at elevane utviklar ein metode for å løyse eit problem dei ikkje kjenner frå før. Algoritmisk tenking er viktig i prosessen med å utvikle strategiar og framgangsmåtar for å løyse problem og inneber å bryte ned eit problem i delproblem som kan løysast systematisk. Vidare inneber det å vurdere om delproblema best kan løysast med eller utan digitale verktøy. Problemløysing handlar òg om å analysere og forme om kjende og ukjende problem, løyse dei og vurdere om løysingane er gyldige.
Resonnering i matematikk handlar om å kunne følgje, vurdere og forstå matematiske tankerekkjer. Det inneber at elevane skal forstå at matematiske reglar og resultat ikkje er tilfeldige, men har klare grunngivingar. Elevane skal utforme eigne resonnement både for å forstå og for å løyse problem. Argumentasjon i matematikk handlar om at elevane grunngir framgangsmåtar, resonnement og løysingar og beviser at desse er gyldige.
- lage og løyse oppgåver i rekneark som omhandlar personleg økonomi
Ein modell i matematikk er ei beskriving av verkelegheita i matematisk språk. Elevane skal ha innsikt i korleis modellar i matematikk blir brukte for å beskrive dagleglivet, arbeidslivet og samfunnet elles. Modellering i matematikk handlar om å lage slike modellar. Det handlar òg om å kritisk vurdere om modellane er gyldige, og kva avgrensingar dei har, vurdere modellane i lys av dei opphavlege situasjonane og vurdere om dei kan brukast i andre situasjonar. Anvendingar i matematikk handlar om at elevane skal få innsikt i korleis dei skal bruke matematikk i ulike situasjonar, både i og utanfor faget.
Representasjonar i matematikk er måtar å uttrykkje matematiske omgrep, samanhengar og problem på. Representasjonar kan vere konkrete, kontekstuelle, visuelle, verbale og symbolske. Kommunikasjon i matematikk handlar om at elevane bruker matematisk språk i samtalar, argumentasjon og resonnement. Elevane må få høve til å bruke matematiske representasjonar i ulike samanhengar gjennom eigne erfaringar og matematiske samtalar. Elevane må få høve til å forklare og grunngi val av representasjonsform. Elevane må kunne omsetje mellom matematiske representasjonar og daglegspråket og veksle mellom ulike representasjonar.
- formulere og løyse problem frå eigen kvardag som har med tid å gjere
Ein modell i matematikk er ei beskriving av verkelegheita i matematisk språk. Elevane skal ha innsikt i korleis modellar i matematikk blir brukte for å beskrive dagleglivet, arbeidslivet og samfunnet elles. Modellering i matematikk handlar om å lage slike modellar. Det handlar òg om å kritisk vurdere om modellane er gyldige, og kva avgrensingar dei har, vurdere modellane i lys av dei opphavlege situasjonane og vurdere om dei kan brukast i andre situasjonar. Anvendingar i matematikk handlar om at elevane skal få innsikt i korleis dei skal bruke matematikk i ulike situasjonar, både i og utanfor faget.
- lage og programmere algoritmar med bruk av variablar, vilkår og lykkjer
Utforsking i matematikk handlar om at elevane leiter etter mønster, finn samanhengar og diskuterer seg fram til ei felles forståing. Elevane skal leggje meir vekt på strategiane og framgangsmåtane enn på løysingane. Problemløysing i matematikk handlar om at elevane utviklar ein metode for å løyse eit problem dei ikkje kjenner frå før. Algoritmisk tenking er viktig i prosessen med å utvikle strategiar og framgangsmåtar for å løyse problem og inneber å bryte ned eit problem i delproblem som kan løysast systematisk. Vidare inneber det å vurdere om delproblema best kan løysast med eller utan digitale verktøy. Problemløysing handlar òg om å analysere og forme om kjende og ukjende problem, løyse dei og vurdere om løysingane er gyldige.
Abstraksjon i matematikk inneber at elevane gradvis utviklar ei formalisering av tankar, strategiar og matematisk språk. Utviklinga går frå konkrete beskrivingar til formelt symbolspråk og formelle resonnement. Generalisering i matematikk handlar om at elevane oppdagar samanhengar og strukturar og ikkje blir presenterte for ei ferdig løysing. Det vil seie at elevane kan utforske tal, utrekningar og figurar for å finne samanhengar og deretter formalisere ved å bruke algebra og formålstenlege representasjonar.
Undervegsvurdering
Undervegsvurderinga skal bidra til å fremje læring og til å utvikle kompetanse i matematikk. Elevane viser og utviklar kompetanse i faget på 5. trinn når dei utforskar og reflekterer over ulike matematiske omgrep, representasjonar og strategiar i arbeid med brøk og uformell løysing av likningar og ulikskapar. Elevane viser og utviklar òg kompetanse når dei bruker kunnskap og ferdigheiter til å formulere og løyse problem som er knytte til kvardagen og samfunnet. Vidare viser og utviklar dei kompetanse i matematikk når dei resonnerer over og argumenterer for løysingar og matematiske samanhengar.
Læraren skal leggje til rette for elevmedverknad og stimulere til lærelyst ved at elevane får utforske matematikk og løyse matematiske problem gjennom å vere kreative, resonnere og reflektere. Læraren skal vere i dialog med elevane om utviklinga deira i programmering og talforståing. Elevane skal få høve til å prøve og feile. Med utgangspunkt i kompetansen elevane viser, skal dei få høve til å setje ord på kva dei opplever at dei får til, og kva dei får til betre enn tidlegare. Læraren skal gi rettleiing om vidare læring og tilpasse opplæringa slik at elevane kan bruke rettleiinga for å utvikle kompetansen sin i å utforske ulike representasjonar og problemløysingsstrategiar og i å argumentere med matematiske omgrep.
