Hovedområder

Matematikk R1

Geometri

Hovedområdet handler om måling, regning og analyse av figurer i planet. Sentralt i hovedområdet er to tilnærmingsmåter til geometri, som utfyller hverandre. Den ene dreier seg om bruk av geometriske steder, kongruens og formlikhet til å løse problemer med rene geometriske argumenter. Konstruksjoner med passer og linjal bygger på disse begrepene. Den andre dreier seg om bruk av vektorer og koordinater til å overføre geometriske problemer til algebra. Videre handler hovedområdet om utvikling av formelle logiske argumenter og bevis i en geometrisk sammenheng.

Algebra

Hovedområdet handler om det grunnleggende symbolspråket i matematikk. Regning, manipulasjon og argumentasjon med symboluttrykk er derfor helt sentralt i hovedområdet. Argumentasjon dreier seg om bruk av ulike bevistyper og logiske relasjoner. I tillegg omfatter hovedområdet sentrale begreper som polynomer, polynomdivisjon og rasjonale uttrykk, logaritmeuttrykk og eksponentialuttrykk.

Funksjoner

Hovedområdet handler om analyse av hvordan en størrelse varierer avhengig av en annen. Det dreier seg om sammenhenger mellom størrelser fra algebra, geometri eller praktiske områder, som analyseres med funksjoner og grafer. Videre handler hovedområdet om sammenhengen mellom en funksjon og dens deriverte. Det omfatter polynomfunksjoner, potensfunksjoner, rasjonale funksjoner, logaritmefunksjoner og eksponentialfunksjoner og sammensetninger av dem. Sentrale begreper i hovedområdet er grense, kontinuitet og derivasjon.

Kombinatorikk og sannsynlighet

Hovedområdet handler om systematiske opptellingsmetoder som danner grunnlag for sannsynlighetsregning. Videre dreier det seg om de grunnleggende begrepene uavhengighet og betinget sannsynlighet og om ordnede og ikke-ordnede utvalg.

Matematikk R2

Geometri

Hovedområdet handler om måling, regning og analyse av figurer i rommet. Videre dreier det seg om koordinater, likninger og vektorer som brukes til å bestemme figurer og beregne lengder, vinkler, areal og volum. I tillegg inngår tredimensjonale vektorer, skalar- og vektorprodukt og parameterframstilling.

Algebra

Hovedområdet handler om å analysere og regne på tallmønstre og på endelige og uendelige summer av tall. Grunnleggende teknikker i hovedområdet er rekursjon og induksjon. Videre dreier det seg om rekker, konvergens og induksjonsbevis.

Funksjoner

Hovedområdet handler om bruk av periodiske funksjoner til å modellere periodiske fenomener. Videre dreier det seg om derivasjon og integrasjon av sentrale funksjoner i modellering og beregninger. Sentrale funksjoner som inngår i hovedområdet, er polynomfunksjoner, potensfunksjoner, rasjonale funksjoner, logaritmefunksjoner, eksponentialfunksjoner, periodiske funksjoner og sammensetninger av dem.

Differensiallikninger

Hovedområdet handler om bruk av matematikk til å analysere og regne på dynamiske fenomener. I dette hovedområdet inngår standardmetoder for lineære og separable differensiallikninger som anvendes på praktiske problemer. I tillegg dreier det seg om sentrale begreper som initialbetingelser, retningsdiagrammer og integralkurver.

Side 3 Av 9

Fant du det du lette etter?

0/250
0/250

Tusen takk for hjelpen!